
HPC Documentation
Release 0.0

HPC group

Oct 07, 2022

QUICK START GUIDE

1 Getting an account 3

2 Accessing the Chalawan 5

3 Connection from Outside NARIT Work 7

4 Transferring Files & Data 9

5 Using Module Environments 11

6 Job Submission 13

7 Compute 15

8 Storage 17

9 Policy & Queue 19

10 Slurm Credit Allocation & Application 21

11 Acknowledgement & Publication 23

12 Slurm Workload Manager 25

13 Running Parallel Jobs 29

14 Job Management 31

15 Slurm Cheatsheet 33

16 Which software is installed on Chalawan 35

17 Installing Software on the Chalawan HPC 37

18 Software Module Scheme & Module environment 39

19 Python (Version, Environment and Packages) 41

20 Basic Linux commands 43

21 Using JupyterLab 45

22 Contact us 51

i

23 Frequently asked questions 53

ii

HPC Documentation, Release 0.0

Chalawan is the high performance computing cluster that powered through the use of parallel programming, increas-
ingly relies on massive datasets and compute-intensive workloads with a wide range of applicability and deployment.

QUICK START GUIDE 1

https://chalawan-hpc-docs.readthedocs.io/en/latest/?badge=latest

HPC Documentation, Release 0.0

2 QUICK START GUIDE

CHAPTER

ONE

GETTING AN ACCOUNT

To start using Chalawan Cluster, user must first submit an online application to get computing time credit and storage
space. The merit of your proposal will also be considered, taking into account amount of requested resources. This
will also provide our clusteradmin with a better understanding of what our users need and how best to prepare the
environments and applications for you.

1.1 Online application

1.1.1 Sign Up

Sign up for an Online Application account. If you are eligible, your account should be activated within one working
day. After the account is activated, please sign in to the system with the username (email address) and password you
provided at the sign up and start filling the online application form.

1.1.2 Submit your application

Fill an online application form and submit. Once completed, you should receive notification of our decision within a
week and further query regarding required software and setup if any.

1.1.3 Account setup notification

Once your account and required setup are ready, our system admin will send you an email regarding your account
details, allocated Slurm credit, storage quota and how to login to Chalawan cluster.

3

http://chalawan.narit.or.th/application/index.php
http://chalawan.narit.or.th/application/tutorial.php

HPC Documentation, Release 0.0

4 Chapter 1. Getting an account

CHAPTER

TWO

ACCESSING THE CHALAWAN

2.1 The command-line interface

Our operating system is based on GNU/Linux. Thus, a command-line interface or command language interpreter
(CLI) is the primary mean of interaction with our HPC. In case you are not familiar with the command-line interface,
free-online course at Codecademy is a good place to start.

2.2 Accessing the Chalawan

For Microsoft Windows user, see Connect to the Remote Server from Microsoft Windows.

The Chalawan cluster is an isolated system which resides in the NARIT’s internal network. At the present time, we
have two systems, Castor and Pollux (hereafter the computing systems).

Castor is the old system which is assigned with the IP address 192.168.5.100. It contains 16 traditional Compute nodes
suited for CPU-intensive tasks. Pollux is the newest one assigned with the IP address 192.168.5.105. It contains 3 GPU
nodes and 3 traditional Compute node which have been refurbished from Castor. If you are using the internet inside
NARIT network you can directly connect to these systems via the Secure shell (ssh) command.

2.3 Connection from outside NARIT network

However, if you are using the internet outside NARIT, you need to log in to the gateway machine, A.K.A. stargate, first.
The gateway machine’s IP address and other information are given to you once you get the permission to access the
Chalawan Cluster.

2.4 Secure shell (ssh) through an intermediate host (the gateway)

This is the easiest method that using the ProxyJump directive. If this method doesn’t work for you because you are
using the very old version of ssh, please read the next section.

To use ProxyJump, you can simply add the flag -J followed by user@gateway.ip:port. The example below shows how
to connect to Castor (don’t forget to replace gateway.ip and port with the given information from the email).

[user@local ~]$ ssh -J user@gateway.ip:port user@192.168.5.100

asasasa

5

mailto:user@gateway.ip

HPC Documentation, Release 0.0

6 Chapter 2. Accessing the Chalawan

CHAPTER

THREE

CONNECTION FROM OUTSIDE NARIT WORK

3.1 topics

wording. . .

7

HPC Documentation, Release 0.0

8 Chapter 3. Connection from Outside NARIT Work

CHAPTER

FOUR

TRANSFERRING FILES & DATA

4.1 rsync & scp (secure copy)

4.1.1 Jump host

4.1.2 Multi-stage

4.2 Cloud Storage

It is possible to mount your cloud storage drive using Rclone.

4.3 JupyterLab Interface

While accessing the cluster via Chalawan JupyterLab, user may use the interface to upload or download local file into
or out off the cluster (see Using Jupyerterlab).

Note: The upload filesize limit via JupyterLab interface is set to 100MB. User will be asked to confirm when trying
to upload a file with size larger than 15MB. Please consider using altternative method to upload/download many large
files as this would negatively affect connections of other users.

9

https://rclone.org
https://lab.narit.or.th

HPC Documentation, Release 0.0

10 Chapter 4. Transferring Files & Data

CHAPTER

FIVE

USING MODULE ENVIRONMENTS

5.1 Topic

wording. . .

11

HPC Documentation, Release 0.0

12 Chapter 5. Using Module Environments

CHAPTER

SIX

JOB SUBMISSION

6.1 Topic

wording. . .

13

HPC Documentation, Release 0.0

14 Chapter 6. Job Submission

CHAPTER

SEVEN

COMPUTE

7.1 Castor & Pollux

7.1.1 Node Configuration

15

HPC Documentation, Release 0.0

16 Chapter 7. Compute

CHAPTER

EIGHT

STORAGE

8.1 Lustre

wording. . .

17

HPC Documentation, Release 0.0

18 Chapter 8. Storage

CHAPTER

NINE

POLICY & QUEUE

9.1 topic

wording. . .

19

HPC Documentation, Release 0.0

20 Chapter 9. Policy & Queue

CHAPTER

TEN

SLURM CREDIT ALLOCATION & APPLICATION

10.1 topic

wording. . .

21

HPC Documentation, Release 0.0

22 Chapter 10. Slurm Credit Allocation & Application

CHAPTER

ELEVEN

ACKNOWLEDGEMENT & PUBLICATION

11.1 topic

wording. . .

23

HPC Documentation, Release 0.0

24 Chapter 11. Acknowledgement & Publication

CHAPTER

TWELVE

SLURM WORKLOAD MANAGER

12.1 Nodes and partitions

Before submitting any job to Pollux, you must learn about available resources. To do that, we use sinfo to view infor-
mation about Compute nodes and partitions. Once it is run, the command will print the information like the output
below.

[user@pollux]$ sinfo
HOSTNAMES PARTITION AVAIL CPUS(A/I/O/T) CPU_LOAD ALLOCMEM FREE_MEM GRES STATE␣
→˓TIMELIMIT
pollux1 chalawan_gpu up 0/24/0/24 3.68 0 54028 gpu:4 idle ␣
→˓infinite
pollux2 chalawan_gpu up 0/28/0/28 3.71 0 246330 gpu:4 idle ␣
→˓infinite
pollux3 chalawan_gpu up 0/28/0/28 3.60 0 246343 gpu:4 idle ␣
→˓infinite
castor1 chalawan_cpu* up 0/16/0/16 0.01 0 55444 (null) idle ␣
→˓infinite
castor2 chalawan_cpu* up 0/16/0/16 0.01 0 55434 (null) idle ␣
→˓infinite
castor3 chalawan_cpu* up 0/16/0/16 0.01 0 55455 (null) idle ␣
→˓infinite
castor4 chalawan_cpu* up 0/16/0/28 0.01 0 92160 (null) idle ␣
→˓infinite
castor5 chalawan_cpu* up 0/16/0/28 0.01 0 92160 (null) idle ␣
→˓infinite
castor6 chalawan_cpu* up 0/16/0/28 0.01 0 92160 (null) idle ␣
→˓infinite
castor7 chalawan_cpu* up 0/16/0/28 0.01 0 92160 (null) idle ␣
→˓infinite
castor8 chalawan_cpu* up 0/16/0/28 0.01 0 92160 (null) idle ␣
→˓infinite
castor9 chalawan_cpu* up 0/16/0/28 0.01 0 92160 (null) idle ␣
→˓infinite
castor10 chalawan_cpu* up 0/16/0/28 0.01 0 92160 (null) idle ␣
→˓infinite
castor11 chalawan_cpu* up 0/16/0/28 0.01 0 92160 (null) idle ␣
→˓infinite
castor12 chalawan_cpu* up 0/16/0/28 0.01 0 92160 (null) idle ␣
→˓infinite

(continues on next page)

25

HPC Documentation, Release 0.0

(continued from previous page)

castor13 chalawan_cpu* up 0/16/0/28 0.01 0 92160 (null) idle ␣
→˓infinite
castor14 chalawan_cpu* up 0/16/0/28 0.01 0 92160 (null) idle ␣
→˓infinite
castor15 chalawan_cpu* up 0/16/0/28 0.01 0 92160 (null) idle ␣
→˓infinite
castor16 chalawan_cpu* up 0/16/0/28 0.01 0 92160 (null) idle ␣
→˓infinite
castor17 chalawan_cpu* up 0/16/0/28 0.01 0 92160 (null) idle ␣
→˓infinite
castor18 chalawan_cpu* up 0/16/0/28 0.01 0 92160 (null) idle ␣
→˓infinite

Here we introduce the new field, PARTITION. Partition is like a specific group of Compute nodes. Note that the suffix
“*” identifies the default partition. AVAIL shows a partition’s state: up or down while CPUS(A/I/O/T) shows count of
nodes with this particular configuration by node state in the form “available/idle/other/total”.

12.2 Basic job submission

12.2.1 Slurm environment variables

Upon startup, sbatch will read and handle the options set in the environment variables. Note that environment variables
will override any options set in a batch script, and command line options will override any environment variables. The
full details are on sbatch manual (man sbatch), section “INPUT ENVIRONMENT VARIABLES”. For example, we
have a script name task1.

#!/bin/bash

#SBATCH -J task1 # Job name
#SBATCH -t 00:01:00 # Run time (hh:mm:ss)

echo "Hello World!"

The default partition is chalawan_cpu, but we want to submit a job to chalawan_gpu instead, we can do either

[user@pollux]$ sbatch -p chalawan_gpu ./task1.slurm

or

[user@pollux]$ export SBATCH_PARTITION=”chalawan_gpu” [user@pollux]$ sbatch ./task1.slurm

There are also output environment variables of the batch script which are set by the Slurm controller, e.g.,
SLURM_JOB_ID, SLURM_CPUS_ON_NODE. For the full details, see “OUTPUT ENVIRONMENT VARIABLES” on
sbatch manual (man sbatch). You may combine them with your script for convenience. The example below shows the
results when we print out some of these values.

[user@pollux]$ cat ./echo.slurm
#!/bin/bash

#SBATCH -J echo # Job name
(continues on next page)

26 Chapter 12. Slurm Workload Manager

mailto:user@pollux
mailto:user@pollux

HPC Documentation, Release 0.0

(continued from previous page)

#SBATCH -o %x-%j.out # Name of stdout output file

echo "Job name: $SLURM_JOB_NAME"
echo "Job ID: $SLURM_JOB_ID"
[user@pollux]$ sbatch ./echo.slurm
[user@pollux]$ cat ./echo-130.slurm
Job name: echo
Job ID: 130

We use the command sbatch followed by a batch script to submit a job to Slurm. sbatch then exits immediately after
the script is successfully transferred to the Slurm controller assigned a Slurm job ID. The batch script is not necessarily
granted resources immediately, it may sit in the queue of pending jobs for some time before its required resources
become available.

[user@pollux]$ sbatch [OPTIONS...] executable [args...]

The batch may contain options preceded with #SBATCH before any executable commands in the script. For example,
we create a simple batch script to print a string “Hello World!” called task1.slurm. Inside the file looks like this

#!/bin/bash

#SBATCH -J task1 # Job name
#SBATCH -t 00:01:00 # Run time (hh:mm:ss)

echo "Hello World!"

After submission with the command sbatch task1.slurm, if there is an empty slot, your task will run and exit
instantly. You will find the output file, slurm-%j.out at the current working directory where %j is replaced with the
job allocation number. The words “Hello World!” is appeared inside that output file. By default, both standard output
and standard error are directed to the same file.

[user@pollux]$ sbatch ./task1.slurm
Submitted batch job 128
[user@pollux]$ cat ./slurm-128.out
Hello World!

12.2.2 Batch vs Interactive jobs

We use the command sbatch followed by a batch script to submit a job to Slurm. sbatch then exits immediately after
the script is successfully transferred to the Slurm controller assigned a Slurm job ID. The batch script is not necessarily
granted resources immediately, it may sit in the queue of pending jobs for some time before its required resources
become available.

[user@pollux]$ sbatch [OPTIONS...] executable [args...]

The batch may contain options preceded with #SBATCH before any executable commands in the script. For example,
we create a simple batch script to print a string “Hello World!” called task1.slurm. Inside the file looks like this

#!/bin/bash

#SBATCH -J task1 # Job name
#SBATCH -t 00:01:00 # Run time (hh:mm:ss)

(continues on next page)

12.2. Basic job submission 27

HPC Documentation, Release 0.0

(continued from previous page)

echo "Hello World!"

After submission with the command sbatch task1.slurm, if there is an empty slot, your task will run and exit instantly.
You will find the output file, slurm-%j.``out at the current working directory where ``%j is replaced
with the job allocation number. The words “Hello World!” is appeared inside that output file. By default, both standard
output and standard error are directed to the same file.

[user@pollux]$ sbatch ./task1.slurm
Submitted batch job 128
[user@pollux]$ cat ./slurm-128.out
Hello World!

12.3 Frequently used sbatch options

There are many options you can add to a script file. The frequently used options are listed below. Each option must
be preceded with #SBATCH. For other available options, you can learn from the Slurm website or using the command
sbatch -h or man sbatch.

Option Description
-J, --job-name=<name> name of job
-N, --nodes=<N> number of nodes on which to run (N = min[-max])
-n<count> number of tasks to run
-c, --cpus-per-task=<ncpus> number of cpus required per task
-e, --error=<err> file for batch script’s standard error
-o, --output=<out> file for batch script’s standard output
-p, --partition=<partition> partition requested
-t, --time=<minutes> time limit
--mem=<MB> minimum amount of real memory
--gres=<list> required generic resources

28 Chapter 12. Slurm Workload Manager

CHAPTER

THIRTEEN

RUNNING PARALLEL JOBS

13.1 Shared memory

Shared memory job runs multiple processes which share memory together on one machine. User should write a script
to request for running a job on a single Compute node with the following maximum number of threads on each machine:

• 16 on the partition chalawan_cpu

• 24 on the node pollux1

• 28 on the nodes pollux2 and pollux3

It is also recommended for a program is written with OpenMP directive and C/C++ multi-threading. An example script
is displayed here

#!/bin/bash

#SBATCH -J shared # Job name
#SBATCH -N 1 # Total number of nodes requested
#SBATCH -n 16 # Total number of mpi tasks
#SBATCH -t 120:00:00 # Run time (hh:mm:ss)

mpirun -np 16 -ppn 1 [options] <program> [<args>]

13.2 Distributed memory

For distributed memory, each process has its own memory and does not share with any others. A distributed memory
job can run across multiple Compute nodes. It requires a program that is written with the specific parallel directive, e.g.
the Message Passing Interface (MPI). Moreover, it requires an additional set up to scatter the processes over Compute
nodes. Suppose we want to run a job with 16 processes which spawn 4 processes on each compute node, we may write:

#!/bin/bash

#SBATCH -J distributed # Job name
#SBATCH -N 4 # Total number of nodes requested
#SBATCH -n 16 # Total number of mpi tasks
#SBATCH --ntasks-per-node=4 # Total number of tasks per one node
#SBATCH -t 120:00:00 # Run time (hh:mm:ss)

mpirun -np 16 -ppn 4 [options] <program> [<args>]

29

https://www.openmp.org/

HPC Documentation, Release 0.0

30 Chapter 13. Running Parallel Jobs

CHAPTER

FOURTEEN

JOB MANAGEMENT

14.1 Job status

However, if there is no empty slot, the job will be listed in a pending (PD) state. You can view it by using the command
squeue. The output column ST stands for state. A running job is displayed with a state R. The Compute node where
the job is running on is shown in the last column.

[user@pollux]$ squeue
JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
1587 chalawan_ task2 goku PD 0:00 1 (Priority)
1585 chalawan_ task1 user PD 0:00 1 (Resources)
1584 chalawan_ task0 vegeta R 3:21:49 1 pollux3

14.2 Job deletion

To remove a running job or a pending job from the queue, please use the command scancel followed by the job id.
To cancel all your jobs (running and pending) you can run scancel -u <username>.

14.3 Job history

sacct displays accounting data for all jobs and job steps in the Slurm job accounting log or Slurm database.

31

HPC Documentation, Release 0.0

32 Chapter 14. Job Management

CHAPTER

FIFTEEN

SLURM CHEATSHEET

All Slurm command started with ‘s’ followed by abbrevation of action word. Here we list the basic commands for
submitting or deleting a job and query the information from it.

sacct is used to report job or job step accounting information about active or completed jobs.

salloc is used to allocate resources for a job in real time. Typically this is used to allocate resources and spawn a
shell. The shell is then used to execute srun commands to launch parallel tasks.

sbatch is used to submit a job script for later execution. The script will typically contain one or more srun commands
to launch parallel tasks.

scancel is used to cancel a pending or running job or job step. It can also be used to send an arbitrary signal to all
processes associated with a running job or job step.

sinfo reports the state of partitions and nodes managed by Slurm. It has a wide variety of filtering, sorting, and
formatting options.

squeue reports the state of jobs or job steps. It has a wide variety of filtering, sorting, and formatting options. By
default, it reports the running jobs in priority order and then the pending jobs in priority order.

33

HPC Documentation, Release 0.0

34 Chapter 15. Slurm Cheatsheet

CHAPTER

SIXTEEN

WHICH SOFTWARE IS INSTALLED ON CHALAWAN

For all users on our system, the Chalawan HPC clusters come with a set of softwares preconfigured. The software on
the Chalawan HPC may be divided into two categories:

• General software

• Sharded licence software

Users can manage the preloaded software and compilation tools which are available on the Chalawan HPC system by
using the “module” tool.

To list the loaded softwares, type,

module list

If you find out your program is not avaliable in our HPC system, you can try to install your program by using complilation
tools or contact our HPC staff.

35

HPC Documentation, Release 0.0

36 Chapter 16. Which software is installed on Chalawan

CHAPTER

SEVENTEEN

INSTALLING SOFTWARE ON THE CHALAWAN HPC

If you find out your desirable software is not installed on our HPC system, you can use these instructions to install it.

First thing that you must know before installing the software is which compilation tools or the system requirements are
used for installing/compling the software. Then, you can follow these “general” steps to install your software.

17.1 1. Preparaing a software

You must upload/download your code into your desirable location, for example, you can download the software package
via wget by typing,

wget -p internet/sourcecode.tar.gz foldername

We suggest that you place it in the home folder (e.g., “/home/username/prgogram/”). If the software is archives, you
can extract it into the specific folder by typing

tar -zxvf sourcecode.tar.gz softwarefolder

17.2 2. Installing a software

Before starting to install a software, you must check the system requirements. If you download the source code from
the developper, you can find the installation instructions in the package (e.g., README file). You can load the the
specific complier version (for example, gnu version 9.3.0) by typing,

module load gnu9/9.3.0

Please note that, when you loaded the different version of softwares, it might be changed the complier version accord-
ingly. Therefore, plaese make sure that all pre-installing modules/compliers are matched.

To install a software, you first move the terminal into the software folder and then starting config the software by typing

cd softwarefolder
./configure

Then, we compile all source codes by typing

make
make install

If all sources are complied correctly, you will find the new installed software file in that folder.

37

HPC Documentation, Release 0.0

17.3 3. Loading a software

In order to easily use your installed software, we can load or make an alias by setting it in the bash script.

First, you open the bash script (.bashrc) located in your home folder “/home/username/.bashrc”.

Then, you load your software and make an alias to call your software by adding this line into the “.bashrc” file,

alias myprogram='softwarefolder/sotwarename'

where “myprogram” is the software alias that you can change and “softwarefolder/sotwarename” is the location of your
software. Note that, before setting an alias, you must check that this alias is avaliable first (ex., typing this alias in
terminal).

Finally, you reload the bash script by typing (one time),

source .bashrc

After you finished all theses steps, you can call your software via the alias by typing,

myprogram

38 Chapter 17. Installing Software on the Chalawan HPC

CHAPTER

EIGHTEEN

SOFTWARE MODULE SCHEME & MODULE ENVIRONMENT

The Chalawan HPC is already pre-installed software packages for all users. To find out a list of software package that
is available, type:

module av

To check a list of software packages is currently loaded, type:

module list

18.1 Load/Unload module

If you would like to change/swap the module, you can load /unload the module by typing:

module load modulename
module unload modulename

39

HPC Documentation, Release 0.0

40 Chapter 18. Software Module Scheme & Module environment

CHAPTER

NINETEEN

PYTHON (VERSION, ENVIRONMENT AND PACKAGES)

19.1 Default Python version on the Chalawan HPC

Python is preinstalled on the Chalawan HPC clusters. You can call the Python program by typing,

• Python version 2.x

python

• Python version 3.x

python3

It is the default program, and pre-installed some packages, for example, astropy, matplotlib, numpy, pandas, scipy and
etc. You can easily run your code by typing,

python myprogram.py
python3 myprogram.py

19.2 Create your environment

Users may be needed to manage the packages which is not allowed with the default. Therefore, if you want to manage
the installed packaged, you should create your own environment (packages). Note that, due to the limitation of free
space in your home folder, you should recheck the freespace and cache files when you installed the new packages.

You can use the following steps to crate your own environment;

To load the Anaconda module to manage the environment, type,

module load anaconda

To create your own environment, for example, the environtment name “myenv”, type,

conda create -n myenv

If you want to set a specific version of Python, type:

conda create -n myenv python=3.7

When you needed to load your environment for coding or running your program, type,

41

HPC Documentation, Release 0.0

module load anaconda
conda activate myenv

19.3 Managing Packages

We can use Anaconda to manage the Python packages.

To install the new package, type,

conda install packagename

Or, via the “pip” module,

pip install packagename

To uninstall the package, type,

pip uninstall packagename

Packages that you installed may be upgradable for fixing some bugs and improving perfermence.

To update all packages of your environment, type,

conda update -n myenv --update-all

Or, with a specific package, type,

pip install packagename --upgrade

42 Chapter 19. Python (Version, Environment and Packages)

CHAPTER

TWENTY

BASIC LINUX COMMANDS

In this page, you can learn the basic commands of linux systems. It helps to work effectively in Linux.

20.1 File Management

20.1.1 pwd

Find out what directory you are currently in.

20.1.2 cd

Move to another working directory

20.1.3 ls

List all files and directories.

20.1.4 cp

Copy file

20.1.5 scp

Copy file across systems

20.1.6 mv

Move file

43

HPC Documentation, Release 0.0

20.1.7 rm

Remove file

20.1.8 tar

Extract and zip files

20.1.9 wget

Download a file via the internet

44 Chapter 20. Basic Linux commands

CHAPTER

TWENTYONE

USING JUPYTERLAB

21.1 Getting Started with Chalawan HPC Lab

Chalawan HPC Lab is a next-generation web-based user interface powered by Jupyterhub . It enables you to work
with documents and activities such as terminals, Jupyter notebooks, text editors and custom components in a flexible,
integrated, and extensible manner. This allow you to access the Pollux from the internet outside NARIT so you don’t
have to access through stargate or VPN anymore.

21.1.1 Login to Chalawan HPC Lab

1.1 Go to the Chalawan HPC Lab website https://lab.narit.or.th

1.2 Enter your username and password (these are the same as the one you normally use to login to the Chalawan
headnode).

1.3 Click login.

45

https://lab.narit.or.th

HPC Documentation, Release 0.0

21.1.2 Start Jupyter server

Once logged in, if you do not have any currently running Jupyter server , you will be ask to spawn a new server.
Spawners will control how Jupyterhub starts the individual server for each user. In order to work with the Jupyterlab,
you should specify the resources for your job; CPU core(s), RAM, Time limit and etc. Please note that the Jupyterlab
use the time credit from your HPC account, thus, please stop the server when you finished your jobs. If you have a
running Jupyter server, this step will be skipped and you will be brought to the Jupyterlab interface.

21.1.3 Running on Headnode (pollux)

For developing, testing, submitting Slurm jobs or just to access your files, you may spawn the Jupyter server on the
Chalawan headnode. But please bear in mind that any heavy usage or long running jobs on the headnode are not allowed
and you must either submit the jobs using Slurm “sbatch” (using the “Terminal” from the “Launcher”) for a batch job.
For interactive jobs that required heavy usage, you must spawn a Jupyter server on compute node(s)

46 Chapter 21. Using JupyterLab

HPC Documentation, Release 0.0

21.1.4 Running on Compute node(s)

For heavy usage, you must select other spawn options than the “Chalawan headnode”. A few template profiles are
provided. These options will allocated computing resources as listed in the options via Slurm job scheduler. For more
flexibility, please use the “Advance Slurm job config” option. If the requested resources are available, your Jupyter
server and Jupyterlab (see section 3) will be launched. If the remaining resources on the cluster does not meet your
request, the spawner will wait in the queue for 1 minute before it aborts and give you a fail message.

21.1. Getting Started with Chalawan HPC Lab 47

HPC Documentation, Release 0.0

21.1.5 “Advance Slurm Job config”

48 Chapter 21. Using JupyterLab

HPC Documentation, Release 0.0

21.1.6 Managing your Jupyter servers

Each user is allowed to simultaneously run 5 extra servers apart from the main “Default Server”. The server management
page can be accessed via the “Home” tab or “File > Hub Control Panel” menu. You may use this interface to start, stop
or add a server.

21.1.7 Stop and manage your Jupyterlab server

Go to the HUB Homepage https://lab.narit.or.th/hub/home or you can click from the file menu.

21.1. Getting Started with Chalawan HPC Lab 49

https://lab.narit.or.th/hub/home

HPC Documentation, Release 0.0

This webpage you will see your default server and your additional server(s). You can add up to 5 additional servers by
field a name of your server and click “Add New Server”.

To stop your server, click “Stop Server”.

50 Chapter 21. Using JupyterLab

CHAPTER

TWENTYTWO

CONTACT US

E-mail: hpc@narit.or.th

: Join Slack Chalawan Workspace for support

51

mailto:hpc@narit.or.th
https://join.slack.com/t/chalawan/signup
https://join.slack.com/t/chalawan/signup
https://chalawan.slack.com

HPC Documentation, Release 0.0

52 Chapter 22. Contact us

CHAPTER

TWENTYTHREE

FREQUENTLY ASKED QUESTIONS

23.1 normal

23.1.1 I can not log-in to Pollux system, what can I do ?

23.1.2 I can not submit jobs to slurm queue in the Pollux system, what can I do ?

53

	Getting an account
	Online application
	Sign Up
	Submit your application
	Account setup notification

	Accessing the Chalawan
	The command-line interface
	Accessing the Chalawan
	Connection from outside NARIT network
	Secure shell (ssh) through an intermediate host (the gateway)

	Connection from Outside NARIT Work
	topics

	Transferring Files & Data
	rsync & scp (secure copy)
	Jump host
	Multi-stage

	Cloud Storage
	JupyterLab Interface

	Using Module Environments
	Topic

	Job Submission
	Topic

	Compute
	Castor & Pollux
	Node Configuration

	Storage
	Lustre

	Policy & Queue
	topic

	Slurm Credit Allocation & Application
	topic

	Acknowledgement & Publication
	topic

	Slurm Workload Manager
	Nodes and partitions
	Basic job submission
	Slurm environment variables
	or

	Batch vs Interactive jobs

	Frequently used sbatch options

	Running Parallel Jobs
	Shared memory
	Distributed memory

	Job Management
	Job status
	Job deletion
	Job history

	Slurm Cheatsheet
	Which software is installed on Chalawan
	Installing Software on the Chalawan HPC
	1. Preparaing a software
	2. Installing a software
	3. Loading a software

	Software Module Scheme & Module environment
	Load/Unload module

	Python (Version, Environment and Packages)
	Default Python version on the Chalawan HPC
	Create your environment
	Managing Packages

	Basic Linux commands
	File Management
	pwd
	cd
	ls
	cp
	scp
	mv
	rm
	tar
	wget

	Using JupyterLab
	Getting Started with Chalawan HPC Lab
	Login to Chalawan HPC Lab
	Start Jupyter server
	Running on Headnode (pollux)
	Running on Compute node(s)
	“Advance Slurm Job config”
	Managing your Jupyter servers
	Stop and manage your Jupyterlab server

	Contact us
	Frequently asked questions
	normal
	I can not log-in to Pollux system, what can I do ?
	I can not submit jobs to slurm queue in the Pollux system, what can I do ?

